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Abstract. Ocean acidification threatens many marine organisms, especially marine calcifiers. The
only global-scale solution to ocean acidification remains rapid reduction in CO2 emissions. Nevertheless,
interest in localized mitigation strategies has grown rapidly because of the recognized threat ocean acidi-
fication imposes on natural communities, including ones important to humans. Protection of seagrass
meadows has been considered as a possible approach for localized mitigation of ocean acidification due
to their large standing stocks of organic carbon and high productivity. Yet much work remains to con-
strain the magnitudes and timescales of potential buffering effects from seagrasses. We developed a bio-
geochemical box model to better understand the potential for a temperate seagrass meadow to locally
mitigate the effects of ocean acidification. Then we parameterized the model using data from Tomales
Bay, an inlet on the coast of California, USAwhich supports a major oyster farming industry. We con-
ducted a series of month-long model simulations to characterize processes that occur during summer
and winter. We found that average pH in the seagrass meadows was typically within 0.04 units of the
pH of the primary source waters into the meadow, although we did find occasional periods (hours)
when seagrass metabolism may modify the pH by up to �0.2 units. Tidal phasing relative to the diel
cycle modulates localized pH buffering within the seagrass meadow such that maximum buffering
occurs during periods of the year with midday low tides. Our model results suggest that seagrass meta-
bolism in Tomales Bay would not provide long-term ocean acidification mitigation. However, we
emphasize that our model results may not hold in meadows where assumptions about depth-averaged
net production and seawater residence time within the seagrass meadow differ from our model assump-
tions. Our modeling approach provides a framework that is easily adaptable to other seagrass meadows
in order to evaluate the extent of their individual buffering capacities. Regardless of their ability to
buffer ocean acidification, seagrass meadows maintain many critically important ecosystem goods and
services that will be increasingly important as humans increasingly affect coastal ecosystems.
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INTRODUCTION

Ocean acidification from anthropogenic carbon dioxide
(CO2) emissions presents a change in ocean chemistry that is
unparalleled in magnitude and rate over the last 300 million
years (Caldeira and Wickett 2003, H€onisch et al. 2012).
Given the widespread evidence for ocean acidification
impacts on marine life, especially for calcifying organisms
(Kroeker et al. 2010, 2013), and increasing evidence for its
effects on broader ecological interactions (Gaylord et al.
2015), interest in mitigation strategies has grown in recent
years. Although the only global-scale solution to ocean acidi-
fication is rapid reduction in CO2 emissions, mitigation
efforts are also being considered at regional-to-local scales.
Indirect mitigation strategies include developing the scien-
tific, regulatory, and management frameworks to reduce risk

from ocean acidification (e.g., reducing nutrient inputs which
drive eutrophication and contribute to coastal acidification
through remineralization of organic matter; Strong et al.
2014, Chan et al. 2016, Weisberg et al. 2016). Direct mitiga-
tion strategies, in contrast, seek to alter the seawater carbon-
ate chemistry, thereby directly buffering against ocean
acidification (Rau 2009, Ilyina et al. 2013, Feng et al. 2016,
Koweek et al. 2016). Restoration and protection of seagrass
has received particular attention as a possible direct mitiga-
tion strategy for protecting coastal ecosystems from ocean
acidification. Seagrass beds are highly productive (Unsworth
et al. 2012), can reduce water velocity (Fonseca et al. 1982),
sequester organic carbon in local sediments (Duarte et al.
2010, 2013), and can export organic carbon to the deep ocean
(Duarte and Krause-Jensen 2017). A simple model based on
published net production rates from Indo-Pacific tropical sea-
grasses suggests that tropical seagrasses may be able to alter
seawater carbonate chemistry at the local scale (Unsworth
et al. 2012). However, this ability has not been quantified
with respect to key factors (e.g., plant density, diel cycle
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variability, seasonal variations in environmental conditions,
time-varying water depth, and flow in the meadow) required
to translate this idea into a practical management tool.
The west coast of North America presents an ideal environ-

ment to investigate the potential of seagrass communities to
modify their local carbonate chemistry and ameliorate ocean
acidification of the surrounding water. Zostera marina (com-
monly called eelgrass) is widely distributed as mostly isolated
patches (2–5 ha) within the small bays and estuaries that dot
the Pacific coast of North America (Green and Short 2003).
Z. marina photosynthesis is stimulated by high CO2, poten-
tially enhancing the ability of the species to remove CO2 from
the water (Zimmerman et al. 1997, Invers et al. 2001, Palacios
and Zimmerman 2007). The California Current System, to
which these numerous estuaries and bays open, is already
experiencing the chemical and biological impacts of ocean
acidification (Gruber et al. 2012, Feely et al. 2016), including
impacts on commercially important marine species (e.g., shell-
fish; Barton et al. 2012). Anticipated impacts to human popu-
lation centers reliant upon these marine resources are just
starting to be understood (Ekstrom et al. 2015).
We developed a biogeochemical box model to explore the

capacity of eelgrass to provide localized mitigation of ocean
acidification on diurnal-to-monthly timescales. We then
parameterized this generalized model for Tomales Bay, Cali-
fornia and the Z. marina that inhabits the shallow areas of
the bay. Building on the earlier work of Unsworth et al.
(2012), our model includes the effects of plant density, flow
rate, water depth, seasonal variations in water temperature,
water column optical transparency, and solar insolation on
seagrass metabolism, which result in changes to the carbonate
chemistry of the overlying water. In the following sections, we
present the model and the empirical parameterizations. Then
we discuss steady-state and time-varying model results.
Finally, we summarize the insights from the model simula-
tions and consider the model limitations as well as the condi-
tions which may enhance ocean acidification buffering by
seagrass meadows. While our model is parameterized for a
temperate eelgrass meadow, the approach used here may be
applied to any coastal systems, such as kelp forests and coral
reefs, to examine the effects of water motion, production, and
respiration on seawater carbonate chemistry.

METHODS

Model equations

Our model calculates the time-varying changes in seawa-
ter carbonate chemistry for a temperate seagrass meadow
using spatially implicit advection–reaction equations for the
concentrations of dissolved inorganic carbon (DIC) and
total alkalinity (TA; both in units of lmol/kg) specified as

dDICðtÞ
dt

¼ uðtÞ
L

ðDICinðtÞ �DICðtÞÞ � PgðtÞ � RðtÞ
qhðtÞ (1)

dTAðtÞ
dt

¼ uðtÞ
L

ðTAinðtÞ � TAðtÞÞ þ RTAðPgðtÞ � RðtÞÞ
qhðtÞ (2)

where u(t) is the water velocity entering the box as a function
of time, and is represented as the sum of mean flow and tidal

components, L is the box length (set to 300 m, the median
length of eelgrass meadows in upper Tomales Bay; see
Tomales Bay: site characteristics), DICin and TAin are the
concentrations of DIC and TA entering the box (also in
units of lmol/kg), Pg(t) is gross production by eelgrass per
unit area, R(t) is the corresponding eelgrass respiration per
unit area, q is the seawater density, RTA is the ratio of TA
production to organic matter formation due to proton
uptake (16/117; Brewer et al. 1975), and h(t) is the tidally
varying water depth drawn from tidal predictions within
Tomales Bay (see Appendix S1).

Flow representation.—We modeled flow into the box as a
combination of mean and tidal flow, such that uðtÞ ¼
�uþ utidalðtÞ, with landward velocities positive and seaward
velocities negative. Time-averaged mean velocity, �u, was set
�0.01 or �0.05 m/s because this bounds most of the range of
mean observed seagrass bed velocities (Appendix S1: Table S1).
Tidal velocity, utidal(t), was modeled as a function of water
depth. We assumed negative (seaward) depth-averaged mean
flow in our shallow eelgrass meadow due to the typical lateral
structure of mean estuarine circulation in positive estuaries
(ocean water is denser than estuarine water), which feature net
landward flow in deeper regions and net seaward flow in shal-
lower regions (Geyer and Maccready 2014). While portions of
inner Tomales Bay become hypersaline in the fall, much of the
Bay maintains a positive density gradient throughout summer
months due to solar heating (a “thermal estuary”; Largier et al.
1996), justifying assumptions of net seaward flow along the
banks of the estuary where eelgrass meadows are found.
We modeled tidal flow, utidal(t), as a function of the

changes in water depth, utidal(t) = a dh(t + /)/dt where a is
a dimensionless coefficient proportional to the magnitude of
the mean velocity (a ¼ 2� 10�4 j�uj). Values of a were not
chosen to represent a particular physical relationship
between tidal flow and mean flow, but rather were chosen in
a simple effort to generate reversible mean flows (i.e., both u
(t) > 0 and u(t) < 0) with a range in tidal velocity approxi-
mately four times as great as the magnitude of the time-aver-
aged mean velocity (�u). We represented the phase lag
between the tidal flow and changes in water depth with /.
We used / = 0 h to represent a standing wave and / = �3 h
to represent a progressive wave.

Boundary chemistry and model configurations.—Boundary
condition water chemistry, DICin, and TAin, were simulated
using both estuarine and oceanic estimates based on observa-
tions from Tomales Bay and adjacent coastal waters (Smith
and Hollibaugh 1997, Feely et al. 2016). In order to gain
insight into how hydrodynamic conditions affect eelgrass
buffering potential, we considered two sets of boundary
conditions. In the first model configuration, we held the
oceanic (DICocean and TAocean) and the estuarine (DICestuary

and TAestuary) boundary conditions constant (henceforth
referred to as “fixed boundaries”). This model setup simu-
lated an eelgrass meadow where the oceanic and estuarine
reservoir volumes on each side of the eelgrass meadow “box”
are large relative to the volume of water above the meadow
(i.e., “inside the box”). The fixed boundaries setup simulated
a condition where any biogeochemical modification of seawa-
ter within the meadow does not affect the boundary
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reservoirs. Under these fixed boundaries, during a flood tide
oceanic waters were advected into the box, and on an ebb
tide estuarine waters were advected into the box (Fig. 1).
In the second model configuration, we allowed the eelgrass

meadow to exchange water with an oceanic side box and an

estuarine side box of equal volume to the eelgrass meadow
(subscripts os and es, respectively, henceforth referred to as
“side boxes”). The side boxes configuration was set up to sim-
ulate conditions where the water that passes over the eelgrass
meadow does not come from infinitely large reservoirs on the

FIG. 1. Schematic of model for (a) fixed boundaries and (b) side boxes configurations. In the fixed boundaries configuration, red font
shows simulated variables during a model run, black font shows parameters held fixed in a given model simulation, dotted arrows show the
spatial dimensions of the eelgrass meadow, dashed arrows show the directional effects of model parameters and simulated variables on each
other, and solid arrows show fluxes of DIC and TA due to advection and metabolism. Panel b) illustrates how the eelgrass box operates
within a three-box domain that includes the ocean-side and estuarine-side boxes. Note that the side box concentrations of DIC and TA are
shown in red font as well, indicating that they are also simulated model variables.
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sides of the meadow, but instead, finite volumes of water sub-
ject to modification themselves via advection from the eel-
grass meadow. This model configuration provides a middle
ground between the fixed-boundaries configuration, where
the carbonate chemistry of the oceanic and estuarine reser-
voirs is fixed, and a closed system without advection where
all water chemistry changes in the eelgrass meadow box come
from photosynthesis and respiration.
The mass balance equations for the meadow, the estuarine

side box, and the oceanic side box were specified as

dDICðtÞ
dt

¼ uðtÞ
L

ðDICosðtÞ�DICðtÞÞ�PgðtÞ�RðtÞ
qhðtÞ

dTAðtÞ
dt

¼ uðtÞ
L

ðTAosðtÞ�TAðtÞÞþRTAðPgðtÞ�RðtÞÞ
qhðtÞ

dDICesðtÞ
dt

¼ uðtÞ
L

ðDICðtÞ�DICesðtÞÞ

dTAesðtÞ
dt

¼ uðtÞ
L

ðTAðtÞ�TAesðtÞÞ

dDICosðtÞ
dt

¼ uðtÞ
L

ðDICocean�DICosðtÞÞ

dTAosðtÞ
dt

¼ uðtÞ
L

ðTAocean�TAosðtÞÞ

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

uðtÞ[0

dDICðtÞ
dt

¼ uðtÞ
L

ðDICesðtÞ�DICðtÞÞ�PgðtÞ�RðtÞ
qhðtÞ

dTAðtÞ
dt

¼ uðtÞ
L

ðTAesðtÞ�TAðtÞÞþRTAðPgðtÞ�RðtÞÞ
qhðtÞ

dDICesðtÞ
dt

¼ uðtÞ
L

ðDICestuary�DICesðtÞÞ

dTAesðtÞ
dt

¼ uðtÞ
L

ðTAestuary�TAesðtÞÞ

dDICosðtÞ
dt

¼ uðtÞ
L

ðDICðtÞ�DICosðtÞÞ

dTAosðtÞ
dt

¼ uðtÞ
L

ðTAðtÞ�TAosðtÞÞ

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

uðtÞ\0

(3)

The mass balance equations for the side boxes describe
advective fluxes from both boundaries (depending on flow
directionality) and are analogous to the advective flux terms
on the DIC and TA mass balances for the eelgrass meadow
box. We did not consider any carbon fluxes from localized
production in the side boxes (represented in Fig. 1b by the
absence of eelgrass within the side boxes). When water flows
from the ocean to the estuary (u(t) > 0), water within the
oceanic side box advects into the meadow box and the
meadow box advects its biogeochemically modified water
into the estuarine side box. When flow reverses such that
water flows from the estuary to the ocean (u(t) < 0), water
within the estuarine side box advects into the meadow box
and the meadow box advects its biogeochemically modified
water to the oceanic side box. In recognition that the side
boxes themselves are affected by advection from both bound-
aries, we decided to advect the static estuarine and oceanic
reservoirs into the respective side boxes depending upon flow
directionality (i.e., DICocean and TAocean advect into the
oceanic side box when u(t) > 0; DICestuary and TAestuary

advect into the estuarine side box when u(t) < 0). Note that
when u(t) < 0, we used |u(t)| in the advection–reaction equa-
tions so that the concentration gradient can always be pre-
sented as incoming-outgoing.

Photosynthesis and respiration rates.—Vertically integrated
rates of gross photosynthesis, Pg, and respiration, R, by the
eelgrass population were parameterized as functions of eel-
grass abundance, downwelling irradiance, and carbonate
chemistry based on a series of model simulations calibrated
for Tomales Bay using the seagrass bio-optical model Grass-
Light (Zimmerman et al. 2015). We approximated eelgrass
abundance using one-sided leaf area index (LAI = m2 leaf/m2

seafloor) because it provides a strong linkage between leaf
optical properties and biomass-specific metabolic rates (Zim-
merman 2006). Incoming solar irradiance at the top of the
eelgrass canopy was modeled based on modeled incoming
solar irradiance at the water’s surface and the light attenua-
tion coefficient, Kd, specific to the bio-optical properties of
Tomales Bay (see Appendix S1 for additional information on
the solar irradiance and Kd calculations). We modeled the ver-
tical distribution of eelgrass leaf biomass within the canopy as
a sigmoidal function of height to a distance of 1 m above the
seafloor, with leaves oriented 15° from the vertical (Zimmer-
man 2003), such that the realized canopy height was 0.97 m.
When water depth was less than the eelgrass canopy height,
the fraction of the eelgrass canopy above the water was
presumed to float at the water’s surface. Details on the depen-
dence of Pg and R on carbonate chemistry within the meadow
can be found in Appendix S1.
Since the goal of this study is to evaluate and quantify the

buffering potential offered by eelgrass, metabolic rates are
for the eelgrass only and do not include contributions from
other benthic or water column processes (see Discussion for
more details). The partial dependence of Pg and R on car-
bonate chemistry leads to coupling between the eelgrass
metabolism and overlying water chemistry such that eelgrass
metabolism is a function of the overlying water chemistry
and the overlying water chemistry is a function of eelgrass
metabolism. Details on the metabolic rate parameterizations
are provided in Appendix S1.

Other carbon fluxes.—We did not include net calcification
(precipitation minus dissolution of calcium carbonate) in our
mass balances for DIC and TA because it is not typically a bio-
geochemically important process in Tomales Bay (Smith et al.
1991). Since TA biogeochemical modification within the mea-
dow is controlled only by RTA and net organic production
(NP = Pg � R), local TA modification within the eelgrass
meadow is typically small (<20 lmol/kg). However, we retained
the TA mass balance in the model for completeness and for
portability to other systems. In particular, the model has
applicability to tropical systems, where net calcification is an
important biogeochemical process. In addition, preliminary
calculations showed air/sea gas fluxes to be much smaller than
those derived from net metabolism (<1% of Pg � R). Air/sea
gas fluxes were, therefore, excluded in these mass balance
calculations.

Buffering effect (buffering capacity).—We defined the
buffering effect, or buffering capacity, as the change in
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carbonate chemistry between a control simulation without
eelgrass (represented by setting LAI = 0) and a model simu-
lation that contains eelgrass at a given density (represented
by LAI > 0). We calculated buffering effects after holding
all other model parameters constant (e.g., boundary condi-
tions, season, flow velocity, tidal phasing, etc.) between the
control and eelgrass-populated model runs such that the dif-
ferences in carbonate chemistry are solely attributable to the
eelgrass density in the model box.

Model resolution.—Model simulations were run at a 15-min
time step in which each time step fully resolves the carbon-
ate chemistry within the meadow (as well as the carbonate
chemistry within the side boxes when the model is config-
ured to run with side boxes), along with eelgrass meadow
simulated Pg and R. The duration of the model time-step is
sufficient to capture intra-day variation in light availability
caused by Earth’s rotation. But the model does not include
weather-scale variation in light availability that results from
clouds. The model includes fluctuations in water depth dri-
ven by the mixed semi-diurnal tides.

Tomales Bay

Site characteristics.—We chose to parameterize our general-
ized model for an eelgrass meadow in Tomales Bay, Califor-
nia, USA (Fig. 2). Located north of San Francisco, Tomales
Bay is a shallow, highly unidirectional (~20 km long by
~1 km wide) semi-enclosed west coast estuary formed in a
drowned rift valley of the San Andreas Fault (Hearn and
Largier 1997; Fig. 2a). This coastal region experiences some
of the strongest upwelling favorable winds along the west
coast of North America (Largier et al. 2006). Fresh water
enters the bay from its southern end (Lagunitas Creek) and
its eastern side (Walker Creek), mostly during winter
months. Waters in Tomales Bay experience a wide range of
physical and chemical conditions as newly upwelled water is
introduced to the bay and begins to undergo biogeochemical
and physical modification. Tomales Bay is the site of a large
bivalve aquaculture economy (Dumbauld et al. 2009), so
the impacts of ocean acidification are likely to have eco-
nomic, as well as ecological, ramifications.
Eelgrass meadows in upper Tomales Bay are distributed

in about 25 patches between the mouth of the bay and Hog
Island, located ~6 km from the mouth of the bay (Fig. 2b).
Manual analysis of patch dimensions in upper Tomales Bay
using Google Earth Pro10 revealed median dimensions of
304 m (longest axis) 9 38 m (orthogonal axis), with a med-
ian patch area of ~1 ha, which covers a total area of about
40 ha. This represents about 10% of the bay area between
the mouth and Hog Island.

Seasonal variability.—We conducted a series of 30-d model
runs designed to simulate summer upwelling, summer relax-
ation, and winter non-upwelling conditions at an eelgrass
meadow in upper Tomales Bay. Eelgrass meadows in this
region experience forcing from both the mouth (oceanic
source waters) and head (estuarine source waters) of the bay
(Largier et al. 1997, Smith and Hollibaugh 1997). This

forcing allowed us to test hypotheses about the effects of the
carbonate chemistry of impinging waters on the buffering
capacity of the eelgrass meadow. We chose to simulate three
seasonal (summer upwelling, summer relaxation, and win-
ter) conditions because they provide maximum contrast in
environmental conditions (temperature, salinity, carbonate
chemistry, and light) experienced by the eelgrass meadow in
Tomales Bay over an annual cycle. We utilized Smith and
Hollibaugh’s (1997) 8-yr-long bimonthly water column
chemistry data set collected in inner-to-middle Tomales Bay
to build composite annual cycles of temperature, salinity,
and water chemistry, from which we chose our seasonal val-
ues. The dates of the seasonal simulations were chosen by
selecting the maximum and minimum values for the Bakun
Upwelling Index parameterization provided in Smith and
Hollibaugh for Tomales Bay (1997), which they used as a
proxy for the strength of the annual upwelling cycle. These
maxima and minima were Calendar Days 198 and 16,
respectively. Therefore summer and winter model simula-
tions started on Calendar Days 183 and 1, respectively.
Selected summer values of pHocean represent an attempt

to bound the range in expected pH along the coast between
periods of upwelling and relaxation (Feely et al. 2016). Win-
ter pHocean was taken as 8.1 to represent the return of off-
shore California Current waters to the coast in the absence
of upwelling (Feely et al. 2016). Values for pHestuary and
TAestuary were based on the 8-yr composite record from
Smith and Hollibaugh (1997). DICocean was calculated from
pHocean and TAocean and DICestuary was calculated from
pHestuary and TAestuary (see Model Code for details on carbo-
nate chemistry calculations). We held TAocean constant and
equal to TAestuary to avoid the confounding influence of
advective TA fluxes on our interpretation of the model simu-
lations. Finally, we controlled light attenuation in the water
column of the box model using a light attenuation coeffi-
cient, Kd, which was parameterized in GrassLight. To
parameterize the summer Kd value, we assumed the summer
chlorophyll a (chl a) concentration was 8 lg/L and the total
suspended matter (TSM) concentration was 4 mg/L. We
assumed the winter chl a concentration was 5 lg/L and the
TSM concentration was 4 mg/L to parameterize the winter
Kd value (see Appendix S1 for more details). Although chl a
and TSM were used to inform estimates of the bio-optical
properties of the water column, they were not used directly
in the box model calculations.
We held temperature and salinity, and therefore q, con-

stant within each seasonal simulation, only varying them
across the seasonal scenarios in accordance with Table 1.
We also repeated each simulation four times, varying the
phasing of the incoming velocity with respect to the changes
in tidal height (/) from 0 to �3 h in order to capture all pos-
sible tidal cycle-diel cycle interactions. Results of these four
model runs were aggregated to represent a broader distribu-
tion of pH modification expected within each modeling sce-
nario (Fig. 3).

Model code

We conducted all box model simulations, data analysis,
and plotting in R (R Core Team 2016). We used the deS-
olve package for the mass balance equations (Soetaert10 https://www.google.com/earth/desktop/
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et al. 2010). We used the seacarb package for all carbon-
ate chemistry calculations with default settings for all
equilibrium constants (Gattuso et al. 2016). We assumed
negligible pressure effects and contributions from nitrate,

silicate, and phosphate in our carbonate chemistry calcu-
lations. All figures in the main text and Appendix S1
were developed using the ggplot2 package (Wickham
2009).

FIG. 2. (a) Map of Tomales Bay, California, USA, taken from Google Earth. Image reveals the narrow, linear nature of this inlet. Eel-
grass meadows appear as dark patches near Hog Island (white dot) in the upper one-third of the estuary. Red dot on the inset map indicates
the location of Tomales Bay on the coast of California, USA. (b) Zoomed-in image of upper Tomales Bay shows eelgrass meadows outlined
in white and oyster aquaculture regions outlined in red.
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RESULTS

Steady-state insights

We begin by considering the steady-state solution to the
eelgrass meadow DIC mass balance (dDIC(t)/dt = 0) since
the DIC mass balance is the primary driver of biogeochemi-
cal variability in the eelgrass meadow. In this steady-state
condition, the advective term (first term on the right side of
Eq. 1) and the reactive term (second term on the right side
of Eq. 1) are set equal. Therefore the difference in DIC
between the incoming and outgoing water across the box
can be calculated as

DICin �DIC ¼ L
�uqh

NP (4)

where NP is net primary production, NP = Pg � R. This
steady-state solution, which is essentially equivalent to Uns-
worth’s simple model (2012), can provide several important
insights. First, DICin � DIC (DDIC, i.e., the change in DIC
from the water that enters the box to the water that leaves
the box) is proportional to the seawater residence time in the
eelgrass meadow, s ¼ L=�u. Second, DDIC is inversely pro-
portional to the water depth, h, over the eelgrass. Third,
DDIC is proportional to the net production, NP.
We converted DDIC to DpH because of its familiarity to

many readers using the summer temperature (18°C), salinity
(35), and TA (2,300 lmol/kg) for the meadow from Table 1.
The steady-state results (Fig. 4) show that the greatest
potential for pH buffering of incoming seawater chemistry
lies in an ecosystem with long residence time and high
depth-averaged net production (upper right-hand corner of
Fig. 4a, b). The dashed lines on Fig. 4a, b display the resi-
dence times for flow velocities of 0.01 and 0.05 m/s through
a meadow of length L = 300 m. Fig. 4a, b also demonstrate
the non-linear dependence of pH on DIC such that the same
depth-averaged net production produces larger pH buffering
when the starting pH is lower. When the starting pH is set to
7.7 (Fig. 4a), the same depth-averaged production inte-
grated over the same residence time yields a greater DpH
than when the starting pH is set to 8 (Fig. 4b).
The steady-state approximations shown in Fig. 4 are ade-

quate for short residence times in tidally driven coastal
regions where one can consider the depth overlying the mea-
dow constant over small periods of time. However, steady-
state assumptions over short timescales (i.e., <1 h) do not
hold at the longer residence times (>3 h) necessary to
achieve large biogeochemical modification in steady-state
conditions. At these longer time scales, tidal fluctuations
and subsequent interactions with downwelling irradiance

and, therefore, benthic metabolism, combine to produce a
more complex set of biogeochemical conditions.

Box model simulations

Relaxing the static assumptions of the steady-state calcu-
lations allowed us to investigate more realistically the poten-
tial of eelgrass to buffer the chemistry of water advected into
the meadow. We continue to use pH as the carbonate chem-
istry variable from which we consider buffering potential,
but note that the model could be used to conduct a similar
set of analyses on other carbonate system parameters of
interest (e.g. ΩAragonite or pCO2).

Summer upwelling results.—Summer upwelling model exper-
iments showed that the pH in the eelgrass meadow was close
to the pH of the estuary, which served as the primary source
water because mean flow was seaward (Fig. 5). In our fixed
boundary simulations, the median pH in the eelgrass mea-
dow was highly consistent across all LAI and flow velocity
conditions, ranging from 7.98 to 8.007 (Fig. 5a). The low
flow conditions (�u = �0.01 m/s) had occasional periods
where pH was elevated above 8.1; the high flow simulations
(�u = �0.05 m/s) reached maximum pH values between 8.05
and 8.1 (Fig. 5a). Minimum pH across the LAI and flow
velocity conditions ranged from 7.637 to 7.7 (Fig. 5a).
Values below 7.7 reflect a combination of nighttime respira-
tion and advection of low pH ocean water into the eelgrass
meadow.
Buffering effects for the fixed boundaries simulations were

greater at lower flow as expected (Fig. 5b). Median buffer-
ing effects in the low flow simulations started at 0.018 for
LAI = 1 and increased to between 0.034 and 0.037 for LAI
values between 3 and 5. Median buffering in the high flow
simulations ranged from 0.005 to 0.011 across LAI = 1–5.
Both maximum and minimum buffering scaled with LAI. In
our discussion of maximum and minimum buffering, we
focus on the low flow simulations because they provide a
greater range of buffering effect estimates than do the high
flow simulations due to the greater residence time in the eel-
grass meadow. Maximum buffering effects ranged from
0.054 at LAI = 1 to 0.143 at LAI = 5. Similarly minimum
buffering range from �0.037 at LAI = 1 to �0.207 at
LAI = 5. Note that the magnitude of negative buffering
(i.e., DpH < 0) was greater than the positive buffering at
high LAI.
The side boxes upwelling simulations generated qualita-

tively similar pH distributions (Fig. 5c) and buffering effects
to the fixed boundaries simulation (Fig. 5d). However, we
did notice one important difference between side boxes and
fixed boundaries simulations. Incorporation of repeated

TABLE 1. Set of environmental conditions within the eelgrass meadow and boundary water chemistries used to parameterize seasonal
simulations.

Season Start calendar day T (°C) Salinity pHocean TAocean pHestuary TAestuary

Summer (upwelling) 183 18 35 7.7 2,300 8.0 2,300
Summer (relaxation) 183 18 35 8.0 2,300 8.0 2,300
Winter 1 11 28 8.1 2,200 8.2 2,200

Notes: pH is on the total scale. TA is in units of of lmol/kg.
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“sloshing” increased the median pH across all LAIs (includ-
ing LAI = 0) and flow conditions as compared to the same
conditions in the fixed boundaries simulations. The effect of
sloshing on median pH ranged from 0.004 to 0.024. Despite
the effect of increasing the median pH, sloshing had a near
negligible effect on buffering capacity. The maximum
increase in buffering capacity from the repeated “sloshing”
of the side boxes simulations was 0.002. We therefore con-
clude that sloshing increased the median pH in the meadow
primarily by altering the advective fluxes, but had minimal
effect on net production, and therefore, buffering capacity
within the meadow.

Summer relaxation results.—Summer relaxation simulations
showed small, but consistent, increases in pH relative to the
incoming water (Fig. 6). In these simulations, both the ocean
side and estuary side boundaries were set to pH = 8, there-
fore deviations from pH = 8 reflect local modification via eel-
grass net production. Median pH in the fixed boundaries low
flow conditions ranged from 8 to 8.035 (Fig. 6a). Median pH
in the fixed boundaries high flow conditions was closer to 8,
reflecting the dominance of advection over metabolism in the
high flow scenarios. pH maxima and minima scaled with LAI
and flow condition such that pH ranges were greatest when
mean flow was low and LAI = 5. Side boxes simulations gen-
erated pH distributions similar to the fixed boundaries

simulations (Fig. 6a, c). This similarity suggests little influ-
ence of “sloshing” when the boundary source waters are
equivalent.
Buffering effects for the fixed boundaries (Fig. 6b) and

side boxes (Fig. 6d) simulations appear similar, and similar
to the upwelling simulations (Fig. 5). Buffering effects
increase from LAI = 1 to LAI = 3 and then level off such
that buffering effects are approximately equal across the
range of LAI = 3–5 for both the fixed boundaries and side
boxes simulations. Again we focus on the low flow condi-
tions since the greatest ranges in buffering effects are
observed in the low flow conditions. Median buffering at
LAI = 1 was 0.017 and increased to a maximum of 0.038
units at higher LAI. Maximum buffering in the low flow con-
ditions ranged from 0.051 at LAI = 1 to 0.142 at LAI = 5.
Minimum buffering reached �0.203 at LAI = 5. Similar to
the upwelling simulations, pH ranges increased with LAI
and were greater at low mean flow compared to high mean
flow. The buffering effect was also asymmetric around 0 such
that the range in negative buffering effects was greater than
the range in positive buffering effects (Fig. 6b, d).

Interaction between summer light and density-dependent eel-
grass metabolism.—Buffering effects in the summer upwel-
ling and relaxation simulations scaled non-linearly with LAI
such that buffering effects increased from LAI = 1–3 and
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then leveled off between LAI = 3–5. We attribute this result
to the differing dependence of Pg and R to light and LAI
(Fig. 7). Gross production is dependent on light and LAI.
Eelgrass at LAI = 1 is light-saturated under low irradiance,
but at LAI = 5 has still not reached light saturation at
1,000 lmol�m�2�s�1 (Fig. 7a). Unlike Pg, R is light indepen-
dent and increases linearly as a function of LAI (Fig. 7b).
Net production, NP = Pg � R, therefore exhibits non-linear
dependence on both light and LAI. At the median light val-
ues for the summer simulations (calculated including all day
and night times), net production, and therefore buffering

capacity, was approximately equal for eelgrass communities
of LAIs between 3 and 5. Minimum and maximum pH in
the summer simulations, in contrast, scale with LAI (Fig. 7).
The plot of net metabolism (Fig. 7c) clearly shows the LAI
dependence for negative net metabolism, which occurs
because the metabolic demand of the eelgrass, R, outstrips
the gross production, Pg, at lower light levels and high densi-
ties. In contrast, at the maximum light values simulated dur-
ing the summer model runs (Fig. 3), the light supply is
sufficient to saturate photosynthesis of the densest eelgrass
communities simulated here. The high light availability
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results in greatest net production at highest LAI (Fig. 7c).
The increased net metabolism as a function of LAI results in
LAI-dependent pH buffering such that the greatest pH
increases scale with LAI. Although Pg and R are represented

in our model as polynomial functions of LAI, pH, and light
(see Appendix S1 for more details), these parameteriza-
tions were determined through a series of GrassLight simu-
lations which were intended to encapsulate the important
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bio-optical processes including self-shading at higher
canopy density and biomass-dependent eelgrass respiration.
This gives us confidence that our model results and interpre-
tations are representative of integrated ecophysiological pro-
cesses operating within the eelgrass meadow.

Winter results.—Median pH in the winter scenarios was
close to 8.2, the pH of the estuarine margin (the primary
source water; Fig. 8). Maximum pH reached 8.406 in the
fixed boundaries simulations (Fig. 8a) and 8.417 in the side
boxes simulations (Fig. 8c). Minimum pH across all model
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simulations was 8.1. Median buffering effects for low flow
simulations aggregating the fixed boundaries and side boxes
configurations were small, but positive, for all LAI values
(<0.03 units). Median buffering effects were negligible at

high flow conditions across all LAI values and boundary
configurations. Maximum buffering effects scaled with LAI
and flow conditions (as with summer simulations). However,
maximum buffering during winter was larger than during
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summer. At LAI = 5, maximum buffering for the fixed
boundaries simulations was 0.212 units (Fig. 8b) and for the
side boxes simulations was 0.218 (Fig. 8d). Minimum
buffering was close to zero for both the fixed boundaries
and side boxes simulations. The strong similarity between
calculated buffering capacity for the fixed boundaries and
side boxes simulations supports the findings of the summer
simulations which suggest minimal effects of “sloshing” on
buffering capacity.

Median pH dependence on mean velocity.—Our summer and
winter model experiment results highlighted the close agree-
ment between median pH and the pH of the primary source
waters (the estuarine margin). We conducted a simple model
experiment where we changed �u to test for the effects of
mean flow on pH. We found that �u exerts a dominant con-
trol on pH within the eelgrass meadow (Fig. 9). In summer
upwelling conditions, when �u\0 (seaward flow), median pH
within the meadow was close to the estuarine value of 8 and
when �u[ 0 (landward flow), median pH within the meadow
approached the oceanic value of 7.7. When �u ¼ 0 (i.e., flow
controlled only by tidal velocities), median pH within the
eelgrass meadow assumed an intermediate distribution
between the estuarine and oceanic end members (except for

the winter side boxes simulation which had a median pH
above the estuarine end member, but below the condition
where �u = �0.01 m/s; Fig. 9b). Simulations with winter con-
ditions produced similar dependence of pH within the mea-
dow on the pH of the primary source water (Fig. 9b). The
results of this experiment cannot be explained by variations
in tidal velocity, since all three �u conditions had the same
tidal velocity. Nor can they be explained by the starting pH
of the model simulations, which was always set to the ocea-
nic pH (7.7 for summer upwelling simulations, 8.1 for winter
simulations) for all boxplots shown in Fig. 9. While we
believe our selection of negative �u for these model simula-
tions is justified, we emphasize that deviations from this
assumption would lead to different pH ranges in accordance
with pH of the source waters from the primary directional-
ity. These results further underscore the importance of
advective fluxes of DIC and TA into the meadow relative to
metabolic fluxes of DIC and TAwithin the meadow in exert-
ing control over the pH within the meadow.

Seasonal effects on maximum pH buffering.—Maximum
buffering was greater in the winter than in the summer and
minimum (negative) buffering was greater in the summer than
in the winter. This result seemed counterintuitive since winter
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light levels and water temperatures were lower than summer
values (Fig. 3 and Table 1). Indeed, maximum and median
net production rates were lower in the winter than in the sum-
mer (Fig. 10a). Yet the impact of the net production rates on
the overlying water chemistry in this model was modulated
by the water depth, which controlled light propagation to the
eelgrass canopy as well as the volume of water in the meadow
box. The summer water depth cycle, constructed from the
tidal predictions in Tomales Bay (Fig. 3a), reveals that after-
noon water depths, when net production was greatest, were
typically >1 m (Fig. 10b). However, afternoon water depths

in the winter simulations were often <0.5 m (Figs. 3d, 10c).
The resulting effect was that maximum depth-averaged net
production rates in the winter simulations were approximately
double those in the summer simulations, despite maximum
net production rates in the summer being approximately dou-
ble those in the winter (Fig. 10d). Since buffering is generated
by depth-averaged net production in the model, the approxi-
mately doubled maximum depth-averaged net production in
winter relative to that in summer explains why maximum
buffering in the winter was greater than in the summer. Simi-
larly, the alignment of low water with nighttime respiration in
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the summer enhanced the respiratory CO2 flux to the water
column such that the most negative depth-averaged net pro-
duction in the summer was almost five times more negative
than the most negative depth-averaged net production in the
winter. The end result was that summer simulations demon-
strated much greater potential for large negative buffering
excursions (i.e., DpH < 0) than did winter simulations.
Variation in daily cycles of water depth between summer

and winter was not unique to 2016, the year in which we
extracted tidal records to parameterize the model runs. We
aggregated historical tidal predictions from the same tidal
station and observed similar diel depth patterns as described
above, which are due to the amplitude and phasing of the
dominant tidal constituents in Tomales Bay (Appendix S1:
Fig. S1). Together these results demonstrate that inter-seaso-
nal tidal phasing relative to daylight can amplify or attenu-
ate the pH range expected in a seagrass meadow.
Furthermore, because this tidal phasing varies geographi-
cally as well as seasonally, pH buffering will be partially con-
trolled by geographic location, as well as time of year and
net production rates.

DISCUSSION

The modeling analysis presented here represents an
important advancement in quantifying the ability of sea-
grasses to buffer the effects of ocean acidification in coastal
estuaries. Our approach includes key biological factors, such
as plant density and seasonal variations in production and
respiration, as well key physical factors, such as water depth,
tidal currents, and residence time, necessary to understand
and predict the buffering capacity of temperate eelgrass
meadows. Our model predicts greatest pH buffering with
high depth-averaged net production and residence time.
Using Tomales Bay, California as a test case for the model,
we found limited time-averaged buffering capability for
these relatively small meadows. However, we did find short
time periods where the meadow may be able to alter the pH
by �0.2 units. The pH in the meadow was heavily dependent
upon the pH of the source waters, and seasonal variability
in tidal phasing relative to the diel cycle modulated pH
buffering. While this model was carefully parameterized to
evaluate buffering potential for Tomales Bay, we emphasize
that the insights from these model experiments likely hold
true for eelgrass meadows in other temperate estuaries along
the west coast of North America.
Our ability to simulate localized pH buffering and draw

inference from our model results depends on our ability to
realistically simulate photosynthetic and respiratory rates.
Duarte et al. (2010) exhaustively compiled data on world-
wide observations of seagrass metabolism, including
Z. marina. While their data do not include any measure-
ments from the northeast Pacific, the compilation of the
existing Z. marina data sets from the Atlantic showed aver-
age net production of approximately 0 with a range of
approximately �100 to 200 mmol�m�2�d�1 of O2. Assuming
O2:CO2 equivalence (1:1), these results align well with our
simulated distribution of net production rates after convert-
ing Duarte et al.’s observed rates to a per-hour basis
(Fig. 10a). Eddy covariance measurements of O2 flux in
Z. marina meadows in the Atlantic coastal lagoons of

Virginia, USA demonstrated integrated net production close
to zero (metabolic balance) over ~5-d sampling periods in
each of the major seasons, but also measured summer day-
time peak net production rates of ~37 mmol O2�m�2�h�1,
approximately three times as large as those in our model
simulations (Rheuban et al. 2014). Winter daytime peak net
production rates of 8–12 mmol O2�m�2�h�1 from the same
study are approximately 1–1.5 times as large as the peak
winter net production rates simulated in this study
(Fig. 10a). These differences in production rates cannot be
explained by light availability as peak solar irradiance at the
top of the eelgrass canopy in both summer and winter model
scenarios was greater than the light availability reaching the
eelgrass canopy in the Rheuban et al. (2014) field study.
However, the eddy covariance estimates included the meta-
bolic activity of benthic macroalgae, phytoplankton and
especially leaf epiphytes that were excluded from our simula-
tions, but can combine to generate as much productivity as
the Z. marina itself (Hemminga and Duarte 2000). Together,
the results of these two observational studies are quantita-
tively consistent with our model calculations and support
our conclusions about minimal time-averaged pH buffering
estimates, but they also suggest that our model may underes-
timate some periods of exceptionally high pH buffering
capacity resulting from daytime metabolic activity of non-
eelgrass members of the community. Our conclusions about
minimal time-averaged pH buffering also agree with Uns-
worth et al.’s (2012) empirical model of tropical seagrasses,
which predicts average pH buffering of <0.02 units for sea-
grass meadows with residence times of 6 h.

Consideration of controls on buffering capacity

Our model was designed to evaluate the potential for a
temperate eelgrass meadow to locally modify its water chem-
istry on hourly-to-monthly time scales. This idealized model
represents one of the first attempts to understand seagrass
buffering potential from a mechanistic perspective by simu-
lating well known ecophysiological and hydrodynamic pro-
cesses operating within the meadow. We return to Fig. 4 to
provide a framework from which we consider our results
and the processes that can lead to real-world deviations
from the expected results in Tomales Bay as well as different
expectations for results across estuaries. Fig. 4 showed that
the ability of a seagrass meadow to buffer pH is a function
of depth-averaged net production, seawater residence time
within the seagrass meadow, and the pH of the source water
entering the seagrass meadow. We first consider how simple
model assumptions about depth-averaged net production
differ from the complexity of real seagrass meadows.

Seagrass biomass.—Our model did not simulate biomass
dynamics, either biomass accumulation or biomass turnover
followed by subsequent export outside of the meadow. We
assumed constant biomass throughout the 30-d duration of
each model simulation. Accounting for biomass accumula-
tion during certain seasons could increase the buffering
capacity of the meadow, but in other seasons buffering
capacity would be reduced due to seasonal dieback and
decomposition in situ (equivalent to moving up or down on
Fig. 4a or b). While we feel justified in our decision to
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assume constant biomass over the 30-d duration of the
model simulations, we recognize that deviations from this
assumption will lead to different rates of Pg and R, and
therefore, meadow buffering capacity. Understanding the
ranges, timescales, and fate of seagrass biomass should be a
priority for constraining their potential to buffer pH.

Stratification and boundary layers.—Depth-averaged net pro-
duction is not only a function of the net production, but also
the depth over which the photosynthetic and respiratory
fluxes are averaged. In this model, we assumed a well-mixed
water column over the shallow depth occupied by the mea-
dow, which effectively generates the lower bound on the
depth-averaged net production estimate by averaging the
fluxes over the full depth of the water column. Our simplistic
treatment of the hydrodynamics ignored water column strati-
fication, which would reduce the volume of water over which
the photosynthetic and respiratory fluxes are averaged.
The presence of a benthic boundary layer (BBL) could

lead to very different carbonate chemistry within the BBL as
compared to the bulk water above the BBL. However, a
month-long time series in Tomales Bay in November/
December 2017 showed small vertical pH gradients (typi-
cally <0.01 units), suggesting depth variation in carbonate
chemistry in our study system is likely to be minor
(Appendix S1: Fig. S2). It is uncertain how these pH gradi-
ents may respond to seasonal changes in environmental
forcing and/or seagrass biomass. Although our model was
spatially implicit (did not resolve any spatial dimension
within the meadow, including depth), our low flow
(�u = �0.01 m/s) and high flow (�u = �0.05 m/s) simulations
essentially bounded the flow variability observed within beds
(Appendix S1: Table S1). The model results show increased
pH variability in the low flow conditions due to longer s. We
would expect that systems with depth gradients in velocity
would experience increased pH variablity closer to the bed
and dampened variability away from the bed (assuming that
net primary production occurs close to the bed). Even in the
low flow simulations of this study we observed limited evi-
dence for time-averaged pH buffering, giving us confidence
that inclusion of depth dynamics into the model would unli-
kely change the main results of this study. We also note that
we did not consider the effects of strong turbulent mixing
induced by wind or tides which would act to homogenize
any depth gradients within the seagrass meadow.

Tidal modulation.—Depth-averaged net production can also
be modulated by the tidal phasing relative to the diel cycle.
Our model results predict greater maximum pH buffering in
the winter when the low tides align with high solar irradi-
ance in the afternoon. This alignment of the low tides with
peak solar irradiance increases depth-averaged net produc-
tion by both increasing net production (via higher light
availability) and reducing the water volume over which the
net photosynthetic flux is averaged. In the summer, the tidal
phasing relative to the diel cycle results in a larger volume of
water above the eelgrass bed in the afternoon relative to win-
ter, effectively decreasing the depth-averaged net production
by decreasing the light available for photosynthesis and
increasing the volume over which any photosynthetic fluxes
must be averaged. Conversely, in winter, afternoon low

water promotes higher depth-averaged net production. Tidal
modulation of biogeochemical dynamics in California estu-
aries has been previously documented. Nidzieko et al.
(2014) showed that the phasing of high water at nighttime in
Elkhorn Slough during spring tides created net hetero-
trophic conditions because the salt marsh community lining
the banks could only contribute respiratory fluxes to the
water since it was aerially exposed during daylight hours.
Geographic and seasonal differences from those considered
in the model could lead to different tidal modulations of any
seagrass pH buffering. When low water aligns with daytime
highs in solar irradiance and high water aligns with night-
time respiration, depth-averaged net production is amplified
(move up on Fig. 4a, b). When low water aligns with night-
time peak respiration and high water occurs during the
afternoons, tidal modulation decreases depth-averaged net
production, and therefore, eelgrass buffering capacity.

Seawater residence time.—Residence time within the sea-
grass meadow is the second control on the long-term capac-
ity of seagrass meadows to buffer pH. The residence time, s,
is a function of the seagrass meadow length and the flow
velocity. We have considered a relatively small meadow in
these simulations (L = 300 m), which is typical of upper
Tomales Bay. The steady-state solution used to generate
Fig. 4 shows that biogeochemical modification at specific
net production and flow rates is a linear function of L. Lar-
ger meadows, such as those studied by Rheuban et al.
(2014) covering over 1,000 ha, have longer residence times
and can generate larger biogeochemical change to the over-
lying water (move to the right in Fig. 4a, b). For instance,
Unsworth et al. (2012) also considered tropical seagrass
meadows with residence times of 24 h and predicted average
pH increases of up to 0.07 units in these high s systems,
much larger than those estimated for residence times of 6 h.
Vertical velocity profiles may lead to different ss within the

seagrass bed compared to above it. Drag induced by the sea-
grass canopy will reduce flow (Fonseca et al. 1982, Nepf
2012), but drag is also likely controlled by flow velocity mag-
nitude and direction which act to change the blade angle in
the water column (Koch and Gust 1999, Nepf 2012). These
effects are likely more pronounced in dense seagrass canopies.
Bottom friction in rough environments may also act to reduce
flow. These hydrodynamic processes highlight the possibility
of interesting biological–physical feedbacks that may enhance
or reduce the buffering capacity simulated in this model.

Source water.—Seagrass meadow pH is a non-linear func-
tion of the DIC and TA in the water. pH buffering in a mea-
dow for a given amount of depth-averaged production and
residence time depends on the source water being buffered
since we have shown that the source waters control the aver-
age pH (Fig. 9). Lower pH waters are more sensitive to
depth-averaged net production than are higher pH waters
(compare Fig. 4a and b). If the pH of the source water chan-
ged, we predict that not only would the pH distribution
change (Fig. 9), but so would the difference between the pH
of incoming waters and those found within the meadow.

Temperature variability.—Last, our assumptions about tem-
perature in the eelgrass meadow may lead to deviations from
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our buffering capacity estimates. Low pH waters off the Cal-
ifornia coast are well known to correspond to low tempera-
tures (<10°C; Feely et al. 2008). Waters at the mouth of west
coast estuaries experience cold, low pH waters during sum-
mer months. After recently upwelled ocean water enters the
estuary, it warms due to radiative forcing. Properly account-
ing for the balance between advective and radiative compo-
nents of the heat flux requires hydrodynamic modeling tools
beyond the scope of this simple model. Instead, we relied on
an 8-yr observational record from Tomales Bay (Smith and
Hollibaugh 1997) to reconstruct a composite annual temper-
ature cycle in the estuary to gauge mean summer and winter
temperatures. In cases where our fixed summer temperature
of 18°C is an underestimate of the true temperature (e.g.,
summer mid-day), we are likely overestimating the buffering
capacity because the temperature sensitivity for R is usually
greater than the temperature sensitivity for Pg and vice-versa
(although increased CO2 availability can increase the tem-
perature sensitivity of Pg; Zimmerman et al. 2015).
Accounting for this expected temperature bias would likely
dampen the net production within the eelgrass meadow, and
resulting buffering capacity, within the meadow.

Next steps for future modeling.—Our model did not attempt
to capture the full suite of ecological, biogeochemical, and
hydrodynamic processes operating in seagrass meadows.
Table 2 includes a list of many, but not all, processes which
may affect seagrass meadow buffering capacity, along with
their expected effects on seawater carbonate chemistry
within the meadow. The processes described in Table 2 also
provide an opportunity to consider the adaptability of this
model to other seagrass environments. For example, calcifi-
cation is likely to play a more important role in tropical sea-
grass meadows within coral reef ecosystems. In temperate
seagrass meadows where winds are stronger, greater air-sea
gas exchange may counteract local buffering by the seagrass
community. In seagrass meadows adjacent to large riverine
input, organic matter loading and alkalinity contributions
from land-based sources are likely and should be considered.
Understanding the site-specific controls on biogeochemical
fluxes is critical to adapting this model to other environ-
ments. This model also only considers the metabolic activity
of the Z. marina in the meadow alone, ignoring the contri-
butions of periphytic algae and sedimentary metabolism to
carbonate system variability. While we recognize the poten-
tial importance of both of these processes in contributing to
short-term pH buffering, we did not have sufficient

information to accurately characterize such spatially and
temporally dynamic processes. Understanding the potential
for periphytic and/or sedimentary metabolism to contribute
to pH buffering on a range of timescales are important for
understanding seagrass community-level buffering, but are
beyond the scope of this model.
We view this modeling study as a first effort to understand

localized pH buffering and ocean acidification mitigation in
a temperate eelgrass meadow from a mechanistic point of
view. Future efforts should incorporate the full hydrody-
namic circulation using models appropriately for intertidal
regions, such as TRIM (Gross and Stacey 2003), to more
accurately simulate the comprehensive set of hydrodynamic
and thermodynamic processes operating in the shallow
coastal zone that may modulate any pH buffering. Coupling
an estuarine hydrodynamic model to a more complex sea-
grass carbon model, such as GrassLight (Zimmerman et al.
2015) or the CSIRO seagrass model (Baird et al. 2016),
would provide powerful biological–physical insights into pH
buffering. These more complex modeling tools could be
used to provide high spatial and temporal resolution biogeo-
chemical projections in coastal zones and assist coastal man-
agers’ decision-making by providing scenario forecasts.

Downstream effects

Coastal ecosystem managers and stakeholders are inter-
ested not only in the buffering benefits within seagrass
meadows, but also whether and how far buffering benefits
extend downstream. Although we did not consider any
downstream plume dynamics in this model (largely because
the time-averaged DpH out of the box was so small), in
other environments, particularly larger meadows, down-
stream plumes may be significant. The size and strength of
the buffered plume in any coastal ecosystem (not only sea-
grass meadows) depends upon three factors: (1) the magni-
tude of the biogeochemical modification to the seawater
within the meadow, (2) the balance between transport
(advection) and mixing (dispersion), and (3) the water depth
extending outside the seagrass meadow. Downstream plume
spatial extent and intensity will increase with greater depth-
averaged net production. Downstream plume intensity and
along-shore extent will be maintained further downstream
in environments with high along-shore advection relative to
cross-shore dispersion. Cross-shore dispersion results in lat-
eral mixing and thus dilution of the meadow’s biogeochemi-
cal signature. Finally, downstream plumes will be more

TABLE 2. Additional processes controlling seagrass meadow carbonate chemistry not included in our model.

Process Expected effect

Shallower water column Increased DpH because more light at canopy top to support Pg

Periphyton metabolism Increased diel pH variability from increased Pg and R
Heterotrophic metabolism in meadow (e.g., epifauna) Decreased DpH due to increased R
Sedimentary metabolism Decreased DpH from OM remineralization
Air/sea gas exchange Decreased |DpH| because gas exchange works against biogeochemical anomalies
Significant net calcification Increased DDIC and DTA, decreased DpH during daytime due to TA uptake
High (low) alkalinity fresh water input Decreased (increased) DpH because source water pH is high (low)
Adjacent shoreline Stronger downstream DpH plume due to limited disperion on shoreward side
Daytime oxygen production from photosynthesis Decreased DpH due to increased eelgrass shoot and root respiration
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easily maintained in downstream environments with similar
depth ranges as the seagrass meadow. In environments with
deeper water downstream of seagrass meadows, water with
high pH is advected into a much larger volume of unmodi-
fied water (assuming the downstream reservoir is minimally
stratified). As the two bodies of water mix, the unequal size
of the buffered and non-buffered reservoirs will result in
rapid dilution of any buffering effect. Therefore, stakehold-
ers looking to benefit from any buffering effects provided by
a seagrass meadow should prioritize siting their operation in
shallow waters downstream of large, highly productive sea-
grass meadows receiving limited cross-shore mixing.

Additional ecosystem goods and services

Regardless of their potential for locally mitigating ocean
acidification, seagrass meadows play many other critically
important roles in coastal ecosystems, including carbon
sequestration (Fourqurean et al. 2012), protection against
coastal erosion and sea level rise (Duarte et al. 2013), filtra-
tion of bacterial pathogens (Lamb et al. 2017), and provi-
sion of nursery space for finfish and shellfish (Orth et al.
2006). Protecting, and where necessary, restoring seagrass
meadows should be part of a portfolio of strategies for
maintaining coastal ecosystem resilience for biological and
human communities. The modest impact of seagrass on
water chemistry may add to the already described sizable
benefits of seagrass conservation and restoration.

Ocean acidification mitigation strategies

Our model has demonstrated the capacity for localized
short-term pH buffering on the order of 0.1–0.2 units for
small patches of seagrass meadow. This may be helpful for
aquaculture or other commercial operations that can time
their seawater intake to daytime periods when the seagrass
meadow is locally increasing the pH. For instance, Wahl
et al. (2017) observed a 40% calcification increase in the
blue mussel Mytilus edilus with a 0.5 unit increase in pH,
suggesting that buffering of up to 0.2 units could provide
~16% increases in calcification. Buffering benefits may be
greater for organisms that can align the timing of their calci-
fication with daytime increases in pH driven by seagrass or
algal photosynthesis. In the same study, Wahl et al.
observed that M. edilus shifts its calcification to daytime in
treatments featuring pH variability expected under ocean
acidification (lower mean pH and greater pH range) as
compared to ambient pH variability, where differences in
daytime vs. nighttime calcification were statistically insignifi-
cant. This work is just one example of the complexity of
understanding organismal, and eventually, ecosystem
responses to ocean acidification in biogeochemically vari-
able environments.
Over longer time scales (years to decades), sustained miti-

gation of ocean acidification requires marine ecosystems to
remove carbon from the water column and store it for
extended periods of time (so-called blue carbon). If photo-
synthetic fluxes are balanced by respiration and oxidative
fluxes over these longer time scales without additional long-
term storage of carbon, the capacity of the ecosystem to mit-
igate ocean acidification will be limited.

Other short-term, targeted measures may mitigate and/or
delay ocean acidification in the coastal zone. These measures
may include coastal zone planning to limit land-based
sources of nutrient runoff and/or low alkalinity freshwater
into coastal waters, which can exacerbate ocean acidification
(Strong et al. 2014), as well as planning to minimize expo-
sure of vulnerable marine resources to locations which fre-
quently experience acidic conditions (Boehm et al. 2015).
More direct geochemical manipulation of seawater through
alkalinity addition (Albright et al. 2016) and/or enhanced
sea-to-air gas exchange (Koweek et al. 2016) may help with
buffering against ocean acidification. Together these
approaches help to define a portfolio of options which
coastal communities can implement depending upon their
individual needs and resources.
Drawing on this portfolio of options may help coastal

communities delay the onset of ocean acidification and/or
blunt its most serious consequences in the short term. How-
ever, the only long-term, global solution to ocean acidifica-
tion is rapid global reduction in CO2 emissions. Given the
slow pace of efforts to reduce global CO2 emissions, we
believe that rigorous investigation of all available options for
mitigating the effects of warming and acidification on mar-
ine ecosystems should be a top global scientific priority.
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