Our science

Ocean acidification

Consequences of ocean acidification for organisms and communities

Human-produced CO2 is entering the ocean, altering the carbonate chemistry of seawater and decreasing its pH, a process termed “ocean acidification.”  Our lab is working to understand the potential effects of these chemical changes, both in focal taxa that play disproportionately important roles in coastal communities or that operate as key model organisms, and in assemblages of species where perturbed ecological interactions come into play.

Selected publications (go here for pdfs)

Gaylord, B., K.M. Barclay, B.M. Jellison, L.J. Jurgens, A.T. Ninokawa, E.B. Rivest, and L.R. Leighton.  2019.  Ocean change within shoreline communities: From biomechanics to behavior and beyond.  Conservation Physiology 7: coz077, doi:10.1093/conphys/coz077.

Barclay, K.M., B. Gaylord, B.M. Jellison, P. Shukla, E. Sanford, and L.R. Leighton.  2019.  Variation in the effects of ocean acidification on shell growth and strength in two intertidal gastropods.  Marine Ecology Progress Series 626: 109-121.

Jellison, B.M. and B. Gaylord.  2019.  Shifts in seawater chemistry disrupt trophic links within a simple shoreline food web.  Oecologia 190: 955-967.

Rivest, E., B. Jellison, G. Ng, E. Satterthwaite, H.L. Bradley, S.L. Williams, and B. Gaylord.  2019.  Mechanisms involving sensory pathway steps inform impacts of global climate change on ecological processes.  Frontiers in Marine Science 6: 346, doi: 10.3389/fmars.2019.00346.

Jellison, B.M., A.T. Ninokawa, T.M. Hill, E. Sanford, and B. Gaylord.  2016.  Ocean acidification alters the response of intertidal snails to a key sea star predator.  Proceedings of the Royal Society B 283: 20160890, doi.org/10.1098/rspb.2016.0890.

Kroeker, K., E. Sanford, J. Rose, C. Blanchette, F. Chan, F. Chavez, B. Gaylord, B. Helmuth, T. Hill, G. Hofmann, M. McManus, B. Menge, K. Nielsen, P. Raimondi, A. Russell, L. Washburn.  2016.  Overlapping environmental mosaics drive geographic variation in mussel performance and species interactions.  Ecology Letters 19: 771-779.

Gaylord, B., K.J. Kroeker, J.M. Sunday, K.M. Anderson, J.P. Barry, N.E. Brown, S.D. Connell, S. Dupont, K.E. Fabricius, J.M. Hall-Spencer, T. Klinger, M. Milazzo, P.L. Munday, B.D. Russell, E. Sanford, S.J. Schreiber, V. Thiyagarajan, M.L.H. Vaughan, S. Widdicombe, C.D.G. Harley.  2015.  Ocean acidification through the lens of ecological theory.  Ecology 96: 3-15. 

Kroeker, K.J., E. Sanford, B.M. Jellison, and B. Gaylord.  2014.  Predicting the effects of ocean acidification on predator-prey interactions: A conceptual framework based on coastal molluscs.  Biological Bulletin 226: 211-222.

Hettinger, A., E. Sanford, T.M. Hill, E.A. Lenz, A.D. Russell, and B. Gaylord.  2013.  Larval carry-over effects from ocean acidification persist in the natural environment.  Global Change Biology 19: 3317-3326.

Hettinger, A., E. Sanford, T.M. Hill, A.D. Russell, K.N. Sato, J. Hoey, M. Forsch, H.N. Page, and B. Gaylord.  2012.  Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster.  Ecology 93: 2758-2768.

Gaylord, B., T.M. Hill, E.D. Sanford, E.A. Lenz, L.A. Jacobs, K.N. Sato, A.D. Russell, and A. Hettinger.  2011.  Functional impacts of ocean acidification in an ecologically critical foundation species.  Journal of Experimental Biology 214: 2586-2594.